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Abstract

In the field of NLP, the tracking of evolving
entities within textual data is of vital impor-
tance. While Named Entity Recognition (NER)
locates and categorizes entities, Entity Track-
ing monitors the temporal evolution of these
entities. This paper explores the impact of
fine-tuning models equipped with reasoning
capabilities on entity tracking. Leveraging a
T5-base model, we evaluate the effects of fine-
tuning via two distinct avenues: mathematical
reasoning using mathematical question-answer
pairs and computational reasoning with coding-
related question-answer pairs. The study in-
vestigates the models’ performances across in-
dividual datasets—general knowledge, code,
and math—as well as their combinations. Re-
sults demonstrate that models trained on code-
only datasets exhibit superior entity tracking
capabilities compared to general knowledge-
based models, while those trained on math-
ematical reasoning exhibit challenges due to
out-of-vocabulary symbols. We also explore
the influence of learning rates and dataset sizes
on model performance, revealing optimal con-
figurations for training. This research pro-
vides insights into enhancing entity tracking
through reasoning-enabled models, emphasiz-
ing the need for diverse and extensive code-
based datasets in NLP tasks.

1 Introduction

In the realm of natural language, enti-
ties—individuals, places, organizations, or
objects we reference in our narratives (Jurafsky
and Martin, 2020)—serve as the cornerstone
of meaning, facilitating the transmission of
information across generations. Such entities are
far from static; they undergo continuous evolution,
a concept inherently comprehensible to humans.

The ability to monitor the dynamic nature of en-
tities over time holds significant relevance within
NLP. While Named Entity Recognition (NER) is

also a vital task that allows us to locate and cate-
gorize entities mentioned in a text (Sharma et al.,
2022), entity tracking enables us to trace the pro-
gression of entity mentions within a textual cor-
pus, providing invaluable insights into the temporal
changes and narrative evolution (Toshniwal, 2022).
The sentences below exemplify the importance of
the task within NLP.

My dog Berta was born in Argentina 14 years ago
and was as a playful puppy who loved the vibrant

atmosphere of Latin America. Once in the US, Berta
aced the relocation game, settling into her new home

like a pro. Now, she’s head over paws for her
backyard—no nostalgia for her apartment days at

all!

The snippet above introduces the entity of a dog
(Berta), and the usage of “Berta”, “her”, and “she”
effectively tracks the continuity of the entity across
different contexts. Through entity tracking, we
emphasize Berta’s relocation and subsequent ad-
justment, effectively capturing the evolving aspects
of her life journey.

While entity tracking serves as a fundamental pil-
lar in NLP, its complexity far exceeds the simplicity
with which humans track entities. Models must ac-
curately comprehend and connect diverse entity ref-
erences throughout text to preserve coherence and
context thereby supporting downstream tasks like
summarization, machine translation, or question
answering. However, entity tracking has not re-
ceived as much extensive study as NER, likely due
to its higher complexity in linking and maintain-
ing connections between various mentions of enti-
ties, posing challenges that demand more sophisti-
cated algorithms and annotated datasets. Moreover,
while research has shown that the inclusion of inter-
mediate chain of though prompting enables LLMs
to engage in complex reasoning (Wei et al., 2022),
the application of reasoning in entity tracking has
not yet been widely studied. Thus, there is ample
room for research to enhance model performance



in these tasks.
To comprehensively explore the impact of fine-

tuning models equipped with reasoning capabili-
ties, we aim to extend the existing literature. We
specifically assess the effects of finetuning by in-
tegrating reasoning through two distinct avenues:
mathematical reasoning— involving problems with
mathematical questions and comprehensive step-
by-step answers—, and computational reasoning—
encompassing problems with coding-related ques-
tions and well-defined, step-by-step coding solu-
tions. Employing a T5-base model (Raffel et al.,
2020) across these scenarios, we establish a base-
line by utilizing a model finetuned solely on factual
information without any reasoning. Our evaluation
criteria encompass accuracy and entity precision to
gauge the performance of our models. The current
work has the potential to inform the design of more
effective models and enhance their performance
across various applications.

2 Related Work

Entity Tracking: Traditionally, research emphasis
was placed on developing complex model archi-
tectures to address entity-tracking tasks. Previous
research has highlighted the significance of entity
tracking in enhancing reading comprehension tasks,
particularly when incorporating additional entity
features and employing a multi-task tracking objec-
tive (Hoang et al., 2018). However, recent trends
lean toward leveraging fine-tuning or pre-training
techniques to enhance model performance. For in-
stance, studies have revealed that mere fine-tuning
with specialized question-answer formats and aug-
menting decoding mechanisms significantly boosts
performance (Singh et al., 2023). Moreover, inves-
tigations into pre-trained models using both text
and code have unveiled non-trivial entity-tracking
behavior under a two-shot setting, a proficiency
that models pre-trained solely on text demonstrate
only after fine-tuning (Kim and Schuster, 2023).
However, this body of research confronts limita-
tions and the additional study of fine-tuning on
similar data is needed to evaluate its findings.

Reasoning: In the realm of social sciences, it
has been posited that learning loses its capacity
for generalizability when it arises exclusively from
mimicking rather than from reasoning (Bandura,
2008). In the NLP domain, incorporating reasoning
abilities into language models has been shown to
positively impact subsequent tasks like question an-

swering (Rajani et al., 2019) and story completion
(Chen et al., 2019). The incorporation can be quite
simple, as merely the usage and improvement of
chain of thought prompting can help lead to com-
plex reasoning capabilities (Wei et al., 2022). Most
current approaches to studying entity tracking, how-
ever, overlook the potential effect of reasoning to
help in the task. Nevertheless, reasoning can help
by providing a cognitive framework for understand-
ing relationships and connections between entities
across text. Existing work has shown that graph-
based reasoning models improve the tracking of
entities (Huang et al., 2021). Incorporating reason-
ing capabilities into entity tracking models could
enable the recognition of implicit connections or
references to entities, especially when they appear
under varied linguistic forms or contexts. Incorpo-
rating reasoning capabilities in a different manner
could, therefore, help models handle ambiguous
references, making informed decisions by leverag-
ing contextual information and world knowledge,
thus, improving the entity tracking task.

Leveraging Code in Pretraining and Finetun-
ing: Significant efforts have been dedicated to pre-
training and finetuning models using code. For
instance, CodeBERT, an encoder-only model, was
specifically designed for natural language code
search and code documentation generation (Feng
et al., 2020), while CodeT5, an encoder-decoder
transformer model, targeted code defect detection,
clone detection, and code generation (Wang et al.,
2021). The integration of pretraining with code
has demonstrated value across various downstream
applications, including editing tasks (Zhang et al.,
2022), and has revealed additional insights about
the source code and even natural language nam-
ing (Troshin and Chirkova, 2022). In the entity
tracking domain, researchers have found that large
models like GPT-3.5 pretrained on code can in-
fer the evolving state of entities within text (Wei
et al., 2022). Yet, a drawback in this research lies
in the probable impact of differences in model ar-
chitectures. The models studied, encompassing
GPT-3 iterations and Flan-T5, diverge not only in
their training data but also in their foundational
structural designs. This potential discrepancy in
entity-tracking capabilities might be ascribed as
much to the model designs themselves as, if not
more than, solely to their training data. There-
fore, additional research is needed to confirm the
paper’s findings. Nevertheless, investigating the re-



lationship between code LLMs and entity tracking
holds significance due to the potential synergy be-
tween understanding code-based information and
tracking entities within text. Code LLMs possess
inherent capabilities to comprehend and process
programming languages, often requiring tracking
and understanding entities like variables, functions,
or objects across codebases.

Leveraging Math in Pretraining and Finetun-
ing: Mathematical problems often require tracking
how actions and relations change over time (Amini
et al., 2019), which is a fundamental skill for en-
tity tracking. Mathematical reasoning, encompass-
ing linguistic, visual, practical, logical, numerical,
and symbolic processes (Faldu et al., 2021), forms
the bedrock of this comprehension. Previous stud-
ies have highlighted the efficacy of training mod-
els on question-answer pairs from mathematical
problems, demonstrating strong performance and
adaptability to novel mathematical tasks (Saxton
et al., 2019). Despite the unexplored application
of mathematical principles in entity tracking, on-
going research underscores the potential value of
incorporating math in pretraining for such tasks.

3 Methodology

Our methodology is rooted in the framework es-
tablished by researchers who evaluated the effect
of pre-training on code to track the evolving states
of entities in text (Kim and Schuster, 2023). To
control for differences in model architecture and
pre-training procedure, we fine-tuned a pre-trained
T5 model (Raffel et al., 2020) on five different
datasets and observed variations in performance
on an entity-tracking task. The framework of the
current study is outlined in Figure 1.

3.1 Datasets

To ensure consistency in our results regardless
of the datasets’ size, we deliberately selected the
smallest dataset size (Coding Question-Answer
Pairs) and maintained this uniform number across
all three data categories by randomly selecting
such a number of samples from the other two
datasets. Consequently, our baseline question-
answer pairs in factual information, coding and
mathematics each comprise 1,887 observations for
training (80%) and 472 for testing purposes (20%).
The following five datasets were used:
Factual Question-Answer Pairs: The dataset orig-
inally comprises over 200,000 question-answer

Figure 1: Diagram of our experiment procedure.

pairs sourced from the Jeopardy television game
show. These pairs encompass questions spanning
diverse topics like science, history, and pop cul-
ture, accompanied by their corresponding answers,
typically one-word responses. An example of a
question can be found in Figure 4. These pairs of-
fer factual information without any accompanying
reasoning.
Coding Question-Answer Pairs: We employed a
dataset featuring coding questions from LeetCode
paired with their corresponding answers in Python.
These answers encompass either pure code solu-
tions or code accompanied by supplementary ex-
planations in natural language. An example of a
question can be found in Figure 5.
Mathematical Question-Answer Pairs: We uti-
lized the Mathematics Aptitude Test of Heuristics
dataset (Hendrycks et al., 2021). The dataset has
detailed solutions to mathematical questions utiliz-
ing natural language explanations, mathematical
facts, and mathematical expressions using LaTex.
An example of a question can be found in Figure
6. The original dataset contained 7,500 train and
5,004 test samples.

To delve deeper into the implications of using
different data sources, two novel datasets were de-
rived from the original ones:
General+Code: We created a mix dataset of 50%
Factual Question-Answer Pairs and 50% of Coding
Question-Answer Pairs.

https://www.kaggle.com/datasets/ulrikthygepedersen/200000-jeopardy-questions
https://huggingface.co/datasets/mhhmm/leetcode-solutions-python?row=0


General+Math: We created a mix dataset of 50%
Factual Question-Answer Pairs and 50% of Mathe-
matical Question-Answer Pairs.

3.2 Models

We used a pre-trained T5-base model, a variant of
the Transformer architecture (Raffel et al., 2023),
as our baseline model. The T5-Base model, devel-
oped by Google Research, is known for its versa-
tility in NLP tasks. The decision to use T5-Base is
based on its success in capturing complex language
patterns, its adaptability to various downstream
tasks, and its small nature (Raffel et al., 2023).

Using the T5-base model as baseline, we fine-
tuned five models on a conditional sequence genera-
tion task using the five datasets described in Section
3.1. The models are named after the dataset they
were fine-tuned on.

3.3 Experiments

In addition to comparing the performance of mod-
els mentioned in Seciton 3.2, we experimented with
different learning rates and dataset sizes.

3.3.1 Learning Rate
For each model, we experimented with three learn-
ing rate settings: 3e-3, 3e-4, 3e-5. By exploring
multiple learning rates, we aim to decipher the ideal
rate that not only expedites model convergence dur-
ing training but also gives best performance across
diverse datasets. This comprehensive exploration
serves as a part of hyperparameter tuning, allowing
us to identify the learning rate that optimally bal-
ances the trade-off between fast convergence and
stable model behavior, thereby contributing to the
model’s adaptability in real-world scenarios.

3.3.2 Dataset Size
After observing the initial results, we conducted a
follow-up experiment to test the effect of dataset
sizes on performance and evaluate the extent to
which our relatively small dataset sizes limit our
study. Specifically, we additionally fine-tuned the
T5-General, T5-Code, and T5-Math models using
500 training examples only, and compared their per-
formance with those trained with all 1,887 training
examples.

3.4 Evaluation

In the original work by Kim and Schuster (Kim
and Schuster, 2023), the authors employed a 2-shot

training method with the following prompt for T5
models:

Given the description after "Description:", write a
true statement about a box and the contents of this
box according to the description after "Statement:".

Description: Box 0 contains the car, Box 1 contains
the cross, Box 2 contains the bag and the machine,
Box 3 contains the paper and the string, Box 4 con-
tains the bill, Box 5 contains the apple and the cash
and the glass, Box 6 contains the bottle and the map.
Statement: Box 0 contains the car, Box 1 contains
the cross, Box 2 contains the bag and the machine,
Box 3 contains the paper and the string, Box 4 con-
tains the bill, Box 5 contains the apple and the cash
and the glass, Box 6 contains the bottle and the map.

Description: Box 0 contains the car, Box 1 contains
the cross, Box 2 contains the bag and the machine,
Box 3 contains the paper and the string, Box 4 con-
tains the bill, Box 5 contains the apple and the cash
and the glass, Box 6 contains the bottle and the map.
Remove the car from Box 0. Remove the paper and
the string from Box 3. Put the plane into Box 0. Move
the map from Box 6 to Box 2. Remove the bill from
Box 4. Put the coat into Box 3.
Statement: Box 0 contains the plane, Box 1 contains
the cross, Box 2 contains the bag and the machine
and the map, Box 3 contains the coat, Box 4 contains
nothing, Box 5 contains the apple and the cash and
the glass, Box 6 contains the bottle.

Description: {description}
Statement: Box {boxnum} contains

In our approach, inspired by the mentioned work,
we adopted a similar 2-shot prompting strategy.
However, instead of passing in the full prompt as a
long string, we used the following shorter prompt
for each sample:

Given the description after "Description:", complete
the last sentence with a true statement about the con-
tents of the specified box according to the description.

Description: {description}
Statement: Box {boxnum} contains

and we used the two examples from the original
prompt to train the models under supervision be-
fore evaluating them on the test set. We adopted
this approach to ensure that the models fully grasp
the task requirement, and fairly evaluate their en-
tity tracking ability while minimizing the influence
from their ability to transfer between tasks or un-
derstand long sentences.



4 Implementation

4.1 Fine-tuning Procedure

4.1.1 Tokenization
The datasets, including those for math, general
knowledge, and code, were divided into training
and testing sets. For tokenization, we leveraged
the pre-trained tokenizer provided by the "t5-base"
model, which converts the sequence of text into a
sequence of tokens that the model can take.

4.1.2 Preprocessing
To prepare the data for fine-tuning, we created a
preprocessing function. This function added a pre-
fix such that the sentences are of the same size,
tokenized the text using the T5-Base tokenizer, and
set the labels accordingly. The tokenized answers
were crucial input features for the downstream task,
ensuring compatibility with the T5-Base model’s
text-to-text format.

4.1.3 Fine-tuning Details
We fine-tuned the T5 model on the previously men-
tioned math and coding datasets for the sequence
generation task and a cross-entropy loss function.
Unless otherwise noted, we employed the follow-
ing specifications: a learning rate of 3 × 10−5,
a batch size of 8, an evaluation batch size of 4,
a weight decay of 0.01, and a total of 3 training
epochs.

4.2 Evaluation

4.2.1 Details for Two-Shot Training
We trained each of the models on a conditional
generation task using two supervised examples as
mentioned in section 3 before evaluating them on
the test set. We trained them for 3 epochs, with
a batch size of 8 and a weight decay of 0.01. We
used a cross-entropy loss between the generated
sequence and the gold answer, and we used an
Adam optimizer with parameters of a learning rate
of 10−4 and epsilon of 10−8.

4.2.2 Metrics
For each dataset (general knowledge, code, and
math), the model’s performance was assessed using
the standard NLP evaluation metrics of accuracy,
precision, recall, and F1 score. Note that when
computing accuracy, we treated a box as a unit of
observation and we count a prediction as correct
if and only if all items in the reference solution
matches all items in the predictions, regardless of

item order. When computing precision, recall, and
F1 score, we treated an item as a unit of observation.
An item is counted as a true positive if it appears
in both the reference solution and the prediction,
a false positive if it appears in the prediction only,
and a false negative if it appears in the reference
solution only.

5 Results and Analysis

The metrics across all evaluated models can be
found in Table 1.

5.1 Main Results
The results table distinctly showcases the model’s
performances across various combinations. The
code-based model exhibits superior entity tracking
performance compared to the general knowledge-
based model, showcasing enhancements in accu-
racy, recall, and F1 score while maintaining a com-
parable precision level. Conversely, the mathemat-
ical model displays a marginal decline in perfor-
mance across all metrics. The model combining
50% mathematical reasoning with 50% general
knowledge demonstrates performance superior to
the mathematical model alone but falls short of the
baseline. However, the model blending general
knowledge and code presents a similar accuracy to
the baseline but a decrease compared to the code-
only model.

5.1.1 Interpretation of main results
The decline observed in the mathematical model’s
performance might be attributed to the presence
of LaTeX symbols, unfamiliar during training and
potentially interpreted as out-of-vocabulary words.
In contrast, the code-only model demonstrates im-
proved performance, leveraging its reasoning ca-
pabilities without a significant prevalence of out-
of-vocabulary words, likely due to code characters
being regular characters in its training data. The
model blending 50% mathematical reasoning with
50% general knowledge performs better than the
mathematical model alone but falls short of the
baseline, indicating the impact of incorporating
textual information without LaTeX symbols. This
aligns with the hypothesis regarding the influence
of out-of-vocabulary words. However, the model
combining general knowledge and code exhibits
similar accuracy to the baseline but decreases com-
pared to the code-only model. This outcome might
stem from the reduced emphasis on reasoning-
heavy code-related questions, leading to a decline



Model Learning Rate Accuracy Precision Recall F1 Score
General 3e-3 0.01 0.01 0.01 0.00

3e-4 0.14 0.42 0.40 0.20
3e-5 0.15 0.43 0.39 0.20

Code 3e-3 0.00 0.00 0.00 0.00
3e-4 0.03 0.11 0.11 0.05
3e-5 0.18 0.41 0.44 0.21

Math 3e-3 0.00 0.01 0.01 0.00
3e-4 0.02 0.08 0.09 0.04
3e-5 0.12 0.37 0.33 0.18

General+Code 3e-3 0.00 0.03 0.02 0.01
3e-4 0.03 0.10 0.09 0.05
3e-5 0.14 0.42 0.39 0.20

General+Math 3e-3 0.00 0.00 0.00 0.00
3e-4 0.10 0.34 0.37 0.18
3e-5 0.14 0.41 0.35 0.19

Table 1: Performance metrics of models with different learning rates. Accuracy is computed box-wise while other
metrics are computed item-wise.

Figure 2: Accuracy and F1 score of models with different learning rates.



in reasoning capability compared to the code-only
variant.

5.2 Results Across Different Learning Rates

In the experiment, employing a high learning rate
of 3e-3 resulted in extremely poor performance
across all datasets. Using 3e-4 and 3e-5 yielded
improved and comparable results, particularly in
the general and general+math scenarios. However,
an overall learning rate of 3e-5 proved to be the
most effective for the majority of models. This in-
dicates that lower learning rates were advantageous
for both code and math models.

5.2.1 Interpretation of the Results Across
Different Learning Rates

The difference in performance across learning rates
could be explained by the theory. The decline in
performance observed with a high learning rate of
3e-3 might be attributed to the models overshooting
optimal parameter values and failing to converge ef-
fectively during training. On the other hand, lower
learning rates often facilitate more stable and in-
cremental learning, allowing models to gradually
fine-tune their parameters without overshooting op-
timal values or getting stuck in suboptimal local
minima. This is especially crucial for code and
mathematical reasoning tasks that might require
intricate, nuanced learning patterns.

5.3 Results Across Finetuning Dataset Size

As seen in Figure 3, accuracy improves with a
larger finetuning dataset for the general knowledge
and the code-only models. However, accuracy de-
creases with a larger finetuning dataset for the math-
only model.

5.3.1 Interpretation of Results Across
Finetuning Dataset Size

For the general knowledge-only and code-only
models, a larger dataset correlates with an improve-
ment in accuracy. This trend aligns with the no-
tion that a more extensive and diverse dataset of-
ten leads to better model performance, enabling
models to capture a broader range of patterns
and nuances. The observed decrease in accuracy
for the math-only model with a larger finetuning
dataset might be attributed to the presence of out-
of-vocabulary LaTeX symbols. This decline sug-
gests that the inclusion of additional data, particu-
larly with LaTeX symbols unfamiliar during model
training, could have introduced complexities or

Figure 3: Accuracy and F1 score of models with differ-
ent training dataset sizes.

variations challenging the model’s effective under-
standing of the mathematical reasoning domain.
The OOV LaTeX symbols may have disrupted the
model’s ability to generalize effectively, contribut-
ing to the decline in accuracy despite the increased
dataset size.

5.4 Discussion

Overall, none of the models produce promising
results - there are only a few item-level matches,
and none of the full predictions match the correct
answer. We attribute the current performance par-
tially to the difficulty of the training task. Some
of the code and math solutions are long and con-
tain many out-of-vocabulary words such as special
characters in code and latex commands in math,
potentially preventing the models from generating
sequences that are comparable to the correct an-
swers and benefit from gradient updates.

Since our findings were replicated in our differ-
ent dataset size experiment, the results of the study
likely generalize to similar settings, and we expect
the performance of T5-Base models fine-tuned on
code to be better on entity tracking tasks than a
baseline. However, the results are not generaliz-
able to other model architectures, and additional
research is needed to study the effect of fine-tuning
with reasoning-heavy data on entity tracking.



Model # Examples Accuracy Precision Recall F1 Score
General 500 0.15 0.39 0.37 0.19

1887 0.15 0.43 0.39 0.20
Code 500 0.13 0.40 0.35 0.19

1887 0.18 0.41 0.44 0.21
Math 500 0.15 0.42 0.42 0.21

1887 0.12 0.27 0.33 0.18

Table 2: Performance metrics of models with different training dataset sizes. Accuracy is computed box-wise while
other metrics are computed item-wise. All models use learning rate 3e-5 during training.

5.5 Limitations

Throughout this project, we had several noteworthy
limitations, with one of the most prominent being
the constraints imposed by the relatively modest
size of our fine-tuning dataset. Specifically, we
employed datasets comprised of only 1887 obser-
vations for training the model. This restriction,
while necessary due to resource/time limitations,
had implications for the model’s performance.

One of the key areas where this limitation
became apparent was in dealing with out-of-
vocabulary words. These are words and terms that
the model hadn’t encountered during its training
phase, and as a result, it struggled to generate accu-
rate predictions or contextually relevant responses
when such words were introduced. A larger train-
ing dataset would have provided a more extensive
vocabulary for the model to learn from, potentially
enabling it to better handle OOV words by drawing
upon a wider range of contextual information.

Another aspect that could have benefited from
a larger dataset is the understanding and interpre-
tation of Latex syntax. Latex is a complex and
specialized markup language commonly used for
typesetting mathematical and scientific documents.
Training the model to understand and generate La-
tex effectively requires exposure to a diverse set of
Latex expressions and patterns. With a more exten-
sive dataset, the model could have had access to a
richer variety of Latex syntax examples, allowing
it to improve its ability to work with mathematical
notations, equations, and scientific text.

Yet another constraint we encountered pertained
to the scarcity of computational resources at our
disposal for running the models. Our model execu-
tion took place on Google Colab, where we had to
work within the confines of the available GPUs.

Finally, our decision to use the T5 model, influ-
enced by computational limitations, presented a no-
table trade-off. While T5’s versatility in language
tasks like summarization and reading comprehen-
sion is commendable, it does not reach the sophisti-

cation of newer models like Llama 2 (Touvron et al.,
2023) or GPT-4 (OpenAI, 2023). T5’s architecture
is robust, yet it lacks the advanced techniques and
scalability of Llama 2. Llama 2, notable for its
efficiency and Ghost Attention technique, excels
in dialogue control but does not match the creative
prowess of GPT-4, which stands out in complex
language generation. This compromise underlines
our project’s constraints, balancing the need for a
fine-tunable model within our resources against the
advanced capabilities of more recent models.

5.6 Future work

In the next phase of our research, we wish to
enrich the training dataset by incorporating a
broader range of data, specifically targeting out-of-
vocabulary words frequently encountered in Latex
and code. This enhancement is expected to improve
the model’s performance in handling specialized
terminology and complex expressions.

In future endeavors, we aim to employ more so-
phisticated models than T5, since they likely have
enhanced capabilities for comprehending the intri-
cacies of Latex and code syntax.

6 Conclusion

Our project has made advancements in the field of
Natural Language Processing, specifically in the
domain of entity recognition. We discovered that
incorporating computational reasoning into the pro-
cess of entity tracking enhances the effectiveness
of our models, while Latex-heavy mathematical
reasoning does not. The T5-base model played
a crucial role in setting the foundation for our re-
search. However, our analysis also brought to light
its limitations, particularly in its ability to process
the complex syntax of Latex and coding languages.
These insights serve as a stepping stone for future
research, underlining the importance of employing
more advanced models capable of comprehending
the nuances of such specialized languages more
effectively.
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Impact Statement

Entity tracking spans various domains and holds
immense potential to influence lives profoundly. Its
application across various downstream tasks, such
as machine translation, information extraction, text
summarization, and question-answering, carries
substantial implications for individuals and soci-
eties. Improvements in entity tracking can lead to
better communication and less ambiguity, better in-
formation retrieval, more contextual understanding,
better semantic analysis, and even better person-
alization and recommendation systems as better
tracked entities can lead to better suggestions for
users based on their preferences.

Within machine translation, for instance, entity
tracking plays a pivotal role—it can help bridge
barriers and enhance intercultural communication,
but it has the potential to disrupt communication
with severe repercussions if misinterpreted. Con-
sider the sentence: ‘I told the president of Valdovia
that if his General of the Army does not reach an
agreement with the president of Springfield, he will
declare war.’ Inaccurate entity tracking might mis-
interpret the pronoun ‘he’ in ‘he will declare a war,’
attributing it wrongly to either president, leading to
a catastrophic misunderstanding. A mistranslation
in the language of Springfield could erroneously
suggest to the Springfieldian president that the Val-
dovian president intends to declare war against him,
triggering conflict due to a translation error guided
by entity tracking mistakes. Our research, however,
can help advance the field of entity tracking, espe-
cially by fine-tuning models with code only Q&A
data, and make such critical misinterpretations less
likely to occur.

While our models are not intended for direct ap-
plication, our study may have positive societal im-
pact by providing guidance for future development
of models with better reasoning abilities. Specifi-
cally, as our study provided additional evidence to
the conclusion that models trained on code tend to
have better entity-tracking ability, one may tailor
the training data used accordingly during model
development if such reasoning ability is important
in their applications. As entity-tracking is a crit-
ical component of advanced natural language un-
derstanding, we expect our study conclusion to
contribute indirectly to a variety of application do-
mains.

Even though enhanced entity tracking has a wide
variety of positive applications, its potential mis-

use poses societal risks. Our research shows that
even fine-tuning with code alone can enhance this
task, making it an easily accessible technique, thus
increasing the possibility of widespread applica-
tion and, consequently, misuse. Enhancing entity
tracking could enable more precise identification
and profiling of individuals, potentially leading
to increased surveillance or invasions of privacy.
Moreover, more accurate tracking and profiling
could be used in misinformation campaigns, where
more accurate tracking might be exploited to create
and spread false narratives or targeted propaganda,
leading to societal unrest. Additionally, better en-
tity tracking might inadvertently reinforce biases
present in the data used for training, perpetuating
existing societal inequalities or stereotypes.

In terms of the current study, we used datasets
containing general facts or constructed toy prob-
lems. None of the datasets contain sensitive infor-
mation by design, ensuring a commitment to data
privacy and security. In terms of bias and fairness
considerations, our approach involved fine-tuning a
pre-trained language model, specifically T5, on the
aforementioned datasets. While we did not imple-
ment specific measures targeting bias mitigation,
we do not expect the datasets or tasks to introduce
any additional bias or fairness issue to the models.
Regarding accountability, we also do not expect our
models to be used in critical applications as they
were employed to validate academic hypotheses
only.

In conclusion, the evolution of entity tracking
presents a double-edged sword—holding immense
potential to enhance communication and under-
standing across various domains while simultane-
ously creating risks of societal implications if mis-
used. Our research strives to navigate this balance,
contributing to the advancement of entity track-
ing techniques while advocating for responsible
deployment.



Appendix

Question: Until the 18th century, European treaties were
generally written in this language.
Answer: Latin

Figure 4: Example of a general knowledge question-
answer pair.

Figure 5: Example of a code question-answer pair.

Question: What is the number of units in the distance between
(2, 5) and (−6,−1)?
Answer: We use the distance formula:√

(−6− 2)2 + (−1− 5)2, so then we find that√
64 + 36 = 10.

- OR -
We note that the points (2, 5), (−6,−1), and (2,−1) form a
right triangle with legs of length 6 and 8. This is a Pythagorean
triple, so the length of the hypotenuse must be 10.

Figure 6: Example of a math question-answer pair.


